The Equivariant Coarse Novikov Conjecture and Coarse Embedding

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2 8 Ju l 2 00 5 The coarse geometric Novikov conjecture and uniform convexity

The classic Atiyah-Singer index theory of elliptic operators on compact manifolds has been vastly generalized to higher index theories of elliptic operators on noncompact spaces in the framework of noncommutative geometry [5] by Connes-Moscovici for covering spaces [8], Baum-Connes for spaces with proper and cocompact discrete group actions [2], Connes-Skandalis for foliated manifolds [9], and ...

متن کامل

The coarse Baum–Connes conjecture and groupoids. II

Given a (not necessarily discrete) proper metric space M with bounded geometry, we define a groupoid G(M). We show that the coarse Baum–Connes conjecture with coefficients, which states that the assembly map with coefficients for G(M) is an isomorphism, is hereditary by taking closed subspaces.

متن کامل

Coarse-graining of bubbling geometries and the fuzzball conjecture

In the LLM bubbling geometries, we compute the entropies of black holes and estimate their “horizon” sizes from the fuzzball conjecture, based on coarse-graining on the gravity side. The differences of black hole microstates cannot be seen by classical observations. Conversely, by counting the possible deformations of the geometry which are not classically detectable, we can calculate the entro...

متن کامل

Institute for Advanced Simulation DFT Embedding and Coarse Graining Techniques

c © 2009 by John von Neumann Institute for Computing Permission to make digital or hard copies of portions of this work for personal or classroom use is granted provided that the copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise requires prior specific permission by the publisher ment...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Mathematical Physics

سال: 2020

ISSN: 0010-3616,1432-0916

DOI: 10.1007/s00220-020-03754-9